

POST CMOS PATHFINDING

Leti Innovation Days | June 28-29, 2017

DEVELOPING THE BUILDING BLOCKS FOR DATA PROCESSING

- The challenges to continue the performance improvement of data processing systems are multiple
 - Improve the energy efficiency to maintain at least constant the overall dissipation while continuing the exponential increase in computational power
 - Reduce the bottleneck in the memory-processing communication
 - Increase the density of the functions while reaching the limits of scaling
- In LETI we are addressing these issues with a number of technological developments
 - Efficient use of new devices
 - 3D integration at different granularities
 - New computing architectures

DEVELOPING THE BUILDING BLOCKS FOR DATA PROCESSING

leti

STACKED NANOWIRES FOR 7NM AND BEYOND

Technological challenges

- Strain implementation
- Access resistance (material, aspect ratio)
- Parasitic capacitances decrease
- Selective removal (SiGe vs Si/Si vs SiGe)
- Surface roughness control and multiVt platform

How to design stacked-NW?

Atom probe tomography Electron

Electron tomography

T. Ernst IEDM 2006, C. Dupré IEDM 2008, E. Bernard IEEE EDL 2009, S. Barraud IEDM 2016

OUR VIEW TODAY FOR COMPUTING

3D FOR DESIGN OPTIMISATION

COOLCUBE[™]

Design tools and 2D vs 3D benchmark

Average gain benchmark 2D vs 3D

- Area gain=55%
- Perf gain = 23%
- Power gain = 12%

Energy-delay product of FPGA benchmark circuits for 2D and 3D architectures

- *Further density scaling*
- Cost optimization

•

Added functionnality

- Module developments
- Full 300mm integration route
- **Compact modeling, DRM, PDK**
- IC design

P Batude, IEDM'09, P Batude, IEDM'11, L Pasini, IWJT '14, P Batude, IITC '14, C Fenouillet-Beranger, IEDM '14, P Batude, VLSI'15, L. Pasini, VLSI'15 & '16. L Brunet. VLSI '16

10

10

150

300 450

 I_{ou} ($\mu A/\mu m$)

Planar over planar Lg = 50 over Lg = 25

III-V on top of SiGe, with

IBM-Zurich - VLSI 2017

10

14 FDSOI low thermal budget electrical characteristics

0

600 750 900 1050

Leti Innovation Days | June 28-29, 2017 | 6

No PA Medium PA

150

300

600

450 I_{ον} (μΑ/μm) 750 900

Leti Future of 3D developments

- ✓ Top layer performance has been demonstrated
- \checkmark Inter metal interconnects can sustain the thermal budget
- ✓ 300mm run back and forth between research and fabrication fab
- ✓ Lithographic alignment is achieved

0

OUR VIEW TODAY TO SCALE UP COMPUTING

Chiplets On Interposer

- System-in-Package, Silicon (Passive or active), photonic
- Application dependent

NEW ARCHITECTURES DEVELOPMENT: NEURAL NETWORK DESIGN

leti

Ceatech

list

NEW TECHNOLOGIES FOR NEW ARCHITECTURES: RRAM AS SYNAPSES

leti

3D INTEGRATION COUPLED WITH RRAM

Short term structure

- → RRAM on top level to avoid contamination issue
- → Reuse of existing masks plus ebeam to build 1T1R No W or Cu between the 2 levels → avoid contamination in first trial

1 base ebeam required for RRAM definition RRAM based on $HfO_2/Ti/TiN$ low temp materials (~ 350°C) \rightarrow no critical problems to integrate on the top level

MULTICORE SPIKING NEUROMORPHIC PROCESSOR IN FDSOI 28NM CMOS

Dynamic Neuromorphic Asynchronous Processor Scalable-Learning (DynapSEL)

University of Zurich¹⁴⁴ Tape out 11/16 – silicon expected 07/17

|--|

Chip Name	DynapSEL
Process	ST28FDSOI
Supply Voltage	1V
IO Number	176 + (internal 59)
Chip area	2.8mm x 2.6mm
Core Numbers	4 non-plastic cores 1 plastic core
Neuron Type	Analog AExp I&F
Non-plastic Synapse Type	TCAM based 4-bit
Plastic Synapse Type	Linear 4-bit digital
Throughput of Router	1G Events/second
Scalability	16 x16 chips non- plastic core) 4 x4 chips (plastic cores)

SI QUANTUM ELECTRONICS

M. Veldhorst *et al.* (UNSW) *Nature* 526, 410-414 (2015)

FIRST QBIT IN SI ON 300MM BASED ON FDSOI 28NM FLOW

 \Rightarrow

leti

TOWARDS A REAL MULTI-QUANTUM BIT SYSTEM IN SI

Near-term:

- Pairs of Split-Gates over a single Si NanoWire
- Spacing 40nm or lower
- One side for data qubits, other side for readout via reflectometry
- Tunable Nearest neighbor coupling via (local) ground plane defined under the BOx

- Time is short to show the work on materials that is also ongoing with Academia and tool suppliers but please come back and you will see the results
- LETI continue working on looking for new and disruptive ways to push forward computational power in the most efficient way

Leti, technology research institute Commissariat à l'énergie atomique et aux énergies alternatives Minatec Campus | 17 rue des Martyrs | 38054 Grenoble Cedex | France www.leti-cea.com

